Neural recognition and postdiction by temporal distributed distributional code

Li Kevin Wenliang, Maneesh Sahani
Gatsby Computational Neuroscience Unit, University College London kevinli@gatsby.ucl.ac.uk

Model

- Internal model: latent \(p(z_t|x_{t-1}) \) and observation \(p(x_t|z_t) \)
- DDC: encode \(q(z_t|x_{t-1}, z_{t-1}) \) by \(r_t := \mathbb{E}_q[\psi(y(z_{t-1})] \)
- Temporal code: \(\psi_t = k(\psi_t, z_t) \)
- Sleep phase: train \(h(r_{t-1}, x_t) \) by MSE (\(\delta \)-rule)
- Wake phase: predict \(\mathbb{E}_q[\psi_t] \approx r_t = h(r_{t-1}, x_t) \)
- Flexible \(q \) (non-Gaussian), neural (\(\delta \)-rule), postdictive

Key results

- Bimodal filtering
 - Exact posterior (bootstrap particle filter)
 - True \(z \)
 - Bilinear \(h \) DDC filter
 - Linear \(h \) DDC filter

Auditory continuity illusion

Postdictive filtering

- At each time \(t \), have:
 - \(r_{t-1}, z_{t-1}, \psi_t \)
 - Sample \(z_t, x_t \sim p \)
 - Compute \(\psi(t) = k(\psi(t), z_t) \)
 - Update \(W \) to minimise:
 \(\| h_W(r_{t-1}, x_{t}) - \psi(t) \|^2 \) (\(\delta \)-rule if \(h \) is linear/bilinear filter)
 - Readout: find \(\mathbb{E}_q[\psi(t)|z(t)] \)

Network activation during stimulus B

Compare with monkey A1 neurons [5]

Reference

- A single summary statistics of \(z_{t-1}, x_{t-1} \)
- \(\psi_t = U\psi_t + \gamma(z_t) \) random but fixed temporal encoding function
- \(h_W(r_{t-1}, x_{t}) \) or \(h_W(r_{t-1}, x_{t}) \) random but fixed
- Possible to assume \(h \) is linear only in \(\sigma(x_t) \) and derive a formal solution, albeit with complicated neural implementation
- If the state-space model is stationary, \(W \) should converge
- Independent noise in \(\psi_t, \sigma_t \) average out for large population
- Adaptation: follow gradient of variational objective \(\nabla_{\theta} T(\bar{z}, x) \)

Learning to infer

- At each time \(t \), have:
 - \(r_{t-1}, z_{t-1}, \psi_t \)
 - Sample \(z_t, x_t \sim p \)
 - Compute \(\psi(t) = k(\psi(t), z_t) \)
 - Update \(W \) to minimise:
 \(\| h_W(r_{t-1}, x_{t}) - \psi(t) \|^2 \) (\(\delta \)-rule if \(h \) is linear/bilinear filter)
 - Readout: find \(\mathbb{E}_q[\psi(t)|z(t)] \)

DDC: encode \(q(z_{t-1}|x_{t-1}) \) by \(r_t := \mathbb{E}_q[\psi(y(z_{t-1}))] \)

Inferential model

- No assumptions on \(z \)
- Internal (generative) vs inferential (\(\delta \)-rule)
- \(\psi_t = k(\psi_t, z_t) \)
- \(\psi(t) \) is arbitrary \(q(\psi(t)|z(t)) \)
- \(h_W(r_{t-1}, x_{t}) \) outputs \(\bar{z}_{t}(t) \)
- Assess by max ent

Model details

In sleep phase, model solves
\[
\min_W \mathbb{E}_{p(z_{t-1})} \left[\| h_W(r_{t-1}, x_{t}) - \psi(t) \|^2 \right] \tag{1}
\]

- \(\mathbf{r}_t \) is a summary statistics of \(x_{t-1}, z_{t-1} \)
- \(\psi(t) = U\psi_t + \gamma(z_t) \) random but fixed temporal encoding function
- \(h_W(r_{t-1}, x_{t}) \) or \(h_W(r_{t-1}, x_{t}) \) random but fixed
- Possible to assume \(h \) is linear only in \(\sigma(x_t) \) and derive a formal solution, albeit with complicated neural implementation
- If the state-space model is stationary, \(W \) should converge
- Independent noise in \(\psi(t), \sigma_t \) average out for large population
- Adaptation: follow gradient of variational objective \(\nabla_{\theta} T(\bar{z}, x) \)

Additional results

Occluded tracking with noisy DDC