Computation with uncertainty

Four broad hypotheses for how neuronal populations may encode and process uncertainty:
- Linear basis / kernel density estimators (Eliasmith and Anderson 2004)
- Densely Distributed population codes (Zemel et al. 1998; Sahani and Dayan 2003)
- Log-linear codes (Pitt et al. 2008)

Consistent computation requires a hand-crafted circuit.
- Supervised networks can learn to interpret noisy inputs, but do not fit a consistent representation of uncertainty (Orhan and Ma 2017).
- We seek a neural architecture and learning rule that automatically acquires consistent representations of and computations with uncertainty without explicit design.

The distributed distributional code (DDC)

- belief about r represented by linear projections of density p(y|x) on basis functions φi(r): VDC vector
- probability density function p(y|x)

(1) distributed population codes Zemel et al. 1998; Sahani and Dayan 2003

Representation

- Expectations (or moments) define an exponential family of beliefs by maximum entropy.
 - e.g. Gaussians are defined by linear and quadratic functions (first and second moments): where

 - arbitrary functions define more complicated families: such that

 \[\mathbb{E}_r \psi(y) = r \]
 - The rates \(r \) are the mean parameters of the distribution.

- Can encode multiplicity and uncertainty:
 - multiplicity: left or right
 - multiplicity: mixed left and right

Learning

- Each neuron must estimate an expectation: easy to do with supervised learning.
- In fully observed models, probabilistic computations can be learned from training data:

 \[\mathbb{E}_r \psi(y) = \sum_i \phi_i(r) \psi_i \]

Key question

- Can a network trained without explicit supervision of latents learn to represent probabilistic beliefs?
- Propagate uncertainty (message passing)?

A task that requires uncertainty computation

- Data: state-space model
 - Test
 - train
 - DDC
 - Bilinear RNN

\[y_t \sim \mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \] (normal)

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

Results

- The DDC network makes predictions closer to the particle filter than alternatives.

- Does a DDC representation arise automatically in the Bilinear RNN?

- Use radial/basis function (RBF) to learn functions on data history yielded lower APR.

- \(y_t \) found in the Bilinear network explains most of the variance in \(y_t \) (using simpler \(y_t \) (linear or quadratic) or learning functions on data history yielded lower APR.

- New belief is a bilinear function of memory \(y_t \) and observation \(y_t \).
- If we represent \(y_t \), \(y_t \) by a vector \(x_t \), we

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

- \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - Normal (y_t, \Sigma_t)
 - \(\mathcal{N}(\hat{y}_{t-1}, \Sigma_t) \) - normal

Conclusions

- DDC-based distributional code (DDC) represents distributions by nonlinear "moments".
 - A neural network model with bilinear architecture consistent with this hypothesis, trained to perform a task requiring inference (but without explicit probabilistic supervision);
 - even better than the alternative methods.
- The distributed representation provides a significantly lower mean-squared error.
 - Thus, the DDC offers a flexible, powerful and biologically plausible framework for representation, computation and learning.

- Questions
- How does the distributed code emerge in a bilinear form? How can we make a network learn an equivalent form? Does bilinear propagation occur in a short time window?
- How can the network learn sensory features and recognition in a natural environment?
- How can the network learn sensorimotor tasks? How can the network learn sensorimotor tasks?