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Machine learning in/for/from/and neurocience

Today’s overview
1 Modern machine learning techniques
2 Applications of machine learning for neuroscience
3 Neuroscience inspirations for machine learning (on very high level)
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Modern machine learning godview

An (almost) universal description for machine learning:

min
f∈M

Ltr(f ,Dtr) so that Leval(f ,Deval) is small, where Dtr,Deval ∼ S

f : a model or a function
M: the class of model

S: task paradigm
Dtr and Deval: training and
evaluation datasets

Ltr: training objective
Leval: is final evaluation criterion

Categorisation of different approaches:
By goal f and data Dtr

Supervised
f : X → Y, D = {xi , yi}
Unsupervised / self-supervised
f : X → Z, D = {xi}
Reinforcement
f : X → A,
Dtr collected from f

By model space, M
Parametric models: polynomials,
splines, radial basis

Nonparametric models: k-NN,
decision tree, kernel methods,

Neural networks: CNN, RNN,
GNN transformers...

By task paradigm S
Multiple objectives
Transfer / causal learning
Online / continual / active
learning
Meta-learning

Related fields: mathematics, optimization, engineering, statistics, domain knowledges
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Supervised learning Problem setup

Supervised learning

Recall image classification
Dataset Dtr := {xi , yi}N1 where xi ∈ X := Rw×h×c

+ is a vector of image pixels, yi ∈ Y := 1K

=⇒


213
255
· · ·
22


}
w × h × c

︸ ︷︷ ︸
x1

=⇒


12
25
· · ·
9


}
w × h × c

︸ ︷︷ ︸
x2

“cat”
=⇒


0
0
. . .
1


}
K

︸ ︷︷ ︸
y1

“dog”
=⇒


0
0
. . .
1


}
K

︸ ︷︷ ︸
y2

f : Rw×h×c
+ → ∆K Ltr(f ,Dtr) :=

1
N

N∑
i=1

yi · log f (xi ) log(·) is elementwise.
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Supervised learning Problem setup

Supervised learning with neural networks

Supervised learning can solve the following problems

image cls. speech recog. translation gait recog. image seg. scene parsing

X Rw×h×c
+ Rt

1
L
K RT×n×3 Rw×h×c

+ Rw×h×c
+

Y ∆K ∆τ
V ∆τ

V ∆K ∆w×h×c
K

{
∆K ,N4

}M

m=1

Machine supervised learning is a trivial problem to some. But is it?
Most deep learning techniques and tricks are discovered through supervised learning
Becoming a test bed for benchmarking theory and techniques (e.g. tricks)
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Supervised learning Problem setup

Key (overlapping) ingredients in machine learning

width vs depth regularisation normalisation architecture initialisation

optimization
data

augmentation equivariance
finetuning finetuning

A lot remains to be discovered, explained and improved...
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Supervised learning Deep network model of vision

Applications to neuroscience: models of vision

Supervised deep models show similarities to primate visual ventral stream (Yamins et al., 2014)
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Supervised learning Deep network model of vision

Applications to visual perceptual learning

Supervised training replicates findings in visual plasticity on different analysis levels (Wenliang & Seitz, 2018)
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Unsupervised learning Setup

Unsupervised learning

Goal: discover useful representation of complex data for downstream tasks
Quantifiable metrics Leval: outlier detection, generative quality, compression, transfer tasks, etc.

clustering dim. reduction manifold representation generation

X Rn Rn Rn Rn Rn

Z 1m or ∆m Rm,m < n Sm, trees, etc. Rm Rm

Ltr distances
density

reconstruction reconstruction
+ prior

density
+ coarse labels

distributional
metrics,
denoising

Leval visualisation,
classification,

outlier
detection

reconstruction
denoising

interpolation
homology
generation

classification
generation

sample quality
inpainting

interpolation
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Unsupervised learning Setup

Deep learning methods for unsupervised learning

We briefly review the objectives and intuitions of the following approaches
1 Variational autoencoders (VAE)
2 Generative adversarial networks
3 Constractive pre-training
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Unsupervised learning Variational autoencoders (VAE)

Latent variable model

Definition

Given dataset D := {xi}Ni=1, a latent variable models (LVM) posits that each data point xi ∈ X is
generated from a latent variable zi ∈ Z through a model parametrised by θ

zi
θ−→ xi

Example

Linear model: data generated by a linear mapping G ∈ Rd×k , where k < d

xi = Gzi + ϵi

Interpretation of latent variable models:
zi is specific to each data instance xi

θ captures overall patterns for the whole dataset
alternatively, zi is a local parameter for xi , and θ is a global variable for D.
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Unsupervised learning Variational autoencoders (VAE)

Generative latent variable model
To let the zi be controllabe/interpretable, we place a prior pθ(z)

Example

Prior p(z) can be

N (0, 1) Laplace uniform circular Bernoulli hyperbolic Markov chain
common choice sparsity priors rotation-symmetry discrete hierarchical time-series

Likewise, we can specify a flexible and learnable mapping G : Z → X

Example

The likelihood p(x |z) can be

x = Az + ϵ x = Gθ(z) + ϵ z0 → h1, z1 → · · · → x z , y → x

linear + noise nonlinear + noise hierarchical conditional

The joint distribution pθ(x , y) = pθ(z)pθ(x |z) induces a posterior p(z |x) through Bayes rule.
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Unsupervised learning Variational autoencoders (VAE)

Generative model: applications to cognitive science

internal world model
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Unsupervised learning Variational autoencoders (VAE)

Generative model: applications to perception

cue combination

Ernst & Bank, 2002

motion illusion

Weiss et al, 2005

continuity illusions

Green & Swets, 1966

McWalter & McDermott,
2019

visual prior

Houlsby, et al, 2013
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Unsupervised learning Variational autoencoders (VAE)

The variational autoencoder (VAE) and other variants

The variational autoencoder trains the likelihood pθ(x |z) and an encoder q(z|x) jointly

Ltr(θ, q; x) := Ez∼q(z|x) [log pθ(x |z)]︸ ︷︷ ︸
expected recon. loss

−D [q(z|x)||p(z)]︸ ︷︷ ︸
prior constraint

,

where D is come distributional distances.
deterministic q(z|x) and zero D =⇒ conventional nonlinear autoencoder
Gaussian p(z), pθ(x|z) and q(z|x), D = KL =⇒ VAE Ltr(θ; x) ≤ log pθ(x) (Kingma & Welling, 2014; Rezende et al. 2014)
Gaussian p(z), deterministic pθ(x|z) and q(z|x), D is W2 =⇒ Wasserstein AE (Tolstikhin et al. 2017)
D = βKL =⇒ beta-VAE (Higgins et al. 2017)
discrete q(z|x) and vector-quantization loss D =⇒ VQ-VAE (Oord et al., 2018)
Separate network q(z|x) trained by sample from p(z, x) =⇒ Helmholtz machine and wake-sleep algorithm (Dayan et al.,
1994, Hinton et al., 1995)
Implicit q(z|x) by nonlinear moments ⇒ biologically plausible training (Vertex & Sahani 2018, Wenliang & Sahani 2019)
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Unsupervised learning Variational autoencoders (VAE)

VAE: applications to neural data analysis

all-optic interogation

Aitchison et al., 2017

LFADS

Pandarinath et al., 2018

image decoding

Han et al., 2019
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Unsupervised learning Variational autoencoders (VAE)

Wake-sleep algorithms

precursor of VAE

Dayan et al., 1994

dynamic postdiction

Wenliang & Sahani., 2019

training HH models with kernel

Wenliang et al., 2020
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Unsupervised learning Generative adversarial networks

Implicit models

Definitions

Implicit generative model defines a prior p(z) and a deterministic mapping Gθ : Z → X .

The only randomness is in the prior: a latent z maps directly to x , no additional noise.

Example

Differential eqns: Wilson-Cowan, Hodgkin-Huxley models and attractor models.

Technicality: the generative distribution may be supported on a lower-dimensional subspace. The
likelihood of pθ(x) may be ill-defined for a given data point x .
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Unsupervised learning Generative adversarial networks

Optimising distributional distances
Fitting a generative distribution requires a distributional distance

Maximising the log-likelihood is equivalent to minimising the Kullback-Leibler divergence

KL [q∥p] =
∫

q(x) log
q(x)

p(x)
dx =

∫
q(x) log q(x)dx −

∫
q(x) log p(x)dx

The first version of GAN (Goodfellow, 2014) optimises the Jensen-Shannon divergence

JS [q∥p] =
1
2
KL

[
q∥

1
2
(p + q)

]
+

1
2
KL

[
p∥

1
2
(p + q)

]
Later GANs optimises other objectives: MMD-GAN, Cramer-GAN, optimal transport GAN, Wasserstein GAN, f -divergence
GAN, etc.
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Unsupervised learning Generative adversarial networks

GAN for neuroscience

GANs have not made much applications in neuroscience...

Palazzo et al., 2017 Xu, Wenliang et al., 2020 Gershman 2019
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Self-supervised learning

Contrastive self-supervised learning

Can we just learn representation without generating the data?
Contrastive learning (SimCLR, Chen et al., 2019) obtains features invariant to all irrelevant transformations of data.

Sample transformations t, t′ ∼ T
For each x ∈ D, obtain two transformed images xi = t(x) and xj = t′(x)
then transform through a DNN to obtain representations zi = h(xi ) and zj = h(xj )
For m data points, compute similarity sij := ρ(zi , zj ) from one image x , also similarities from different images sik
Minimise the contrastive loss Ltr(xi ) :=

1
2m

∑m
i=1 ℓ(xi , xj ) + ℓ(xj , xi ) where

ℓ(xi , xj ) = − log
exp

(
sij/τ

)∑
k ̸=j exp (sik/τ)

Test on other losses Leval, such as classification
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Self-supervised learning

Self-supervised learning: application to neuroscience

Self-supervised models can transfer to other tasks and predict neural activities (Zhuang et al., 2021)

Problems: self-supervised learning usually requires HUGE dataset and compute power.
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Self-supervised learning

Augment and train, not much thinking

Supervised learning can solve the following problems

image cls. speech recog. translation gait recog. image seg. scene parsing

X Rw×h×c
+ Rt

1
L
K RT×n×3 Rw×h×c

+ Rw×h×c
+

Y ∆K ∆τ
V ∆τ

V ∆K ∆w×h×c
K

{
∆K ,N4

}M

m=1

Modify these to be self-supervised learning.
Are there more principled methods to introduce augmentation?
Can we enumerate all possible augmentations?
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Reinforcement learning

Deep reinforcement learning

Definition

A Markov decision process (MDP) is given by the tuple (S,A,R,PX ,PR, γ), consisting an environment
with transition dynamics PX (s ′|s, a) and reward distribution PR(r |s, a) for s, s ′ ∈ S, a ∈ A and r ∈ R,
discounting factor γ > 0.

Broadly categorised into three approaches
Valued-based

model-free/model-based
offline RL (similar to supervised learning)
distributional RL

Actor-critic
Policy-based

REINFORCE
Deterministic policy gradient
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Reinforcement learning

Valued-based RL

Goal: estimate the value function Qπ : X ×A → R given a policy π
For each transition s ′ ∼ PX (·|s, a) and reward r ∼ PR(·|s, a)

Simple Q-learning in a tabular environment:

Qπ(s, a)← Qπ(s, a) + α
[
r + γmax

a∗
Qπ(s ′, a∗)− Qπ(s, a)

]
Deep Q Network (DQN, Mnih et al., 2015) constructs a neural network Qθ(s, a)

θ
sgd← ∂

∂θ

(
r + γmax

a∗
Qsg(θ)(s

′, a∗)− Qθ(s, a)
)2

where sg is stop-gradient operator (“.detach()” in PyTorch).
The Q-values are used to derive a policy: ϵ-greedy, softmax, etc.

Important tricks to make training data more i.i.d.:
replay buffer: the transitions are accumulated into a replay buffer (biologically inspired?)
offline RL: maintain a behavioural network and a target network, occasionaly copy
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Reinforcement learning

Results on Atari
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Reinforcement learning

Distributional RL

Goal: estimate the return distribution ηπ : X ×A → PR given a policy
Instead of finding Q(s, a) := Eπ [G (s, a)] for G (s, a) :=

∑∞
t=1 γ

tRt , dist. RL estimates the distribution

ηπ(s, a) := distribution(G (s, a))

Distributional versions of Bellman update (Bellemare, Dabney & Rowland, 2023)
Requires a form of distributional representation (e.g. histogram, quantiles)
Biological evidence of dopamine neurons signaling (Dabney et al., 2020)
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Modern machine learning paradigms

The field is exploding...

Classical learning paradigms are losing attention from research as industries begin to prevail.
Forefront of machine learning is addressing more challenging and diverse set of learning problems.

Theory
Meta-learning
Approximating complex physical systems (differential equations)
Learning from human feedback

The following slides are just a brief taste of how much is going on...
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Modern machine learning paradigms

Theory: linear deep networks

Linear deep networks y = WLWL−1 · · ·W1x

no more representation power than a single layer y =
[∏L

l=1 Wl

]
show nonlinear dynamics

related to cognitive development of percpetual and semantic learning

Li Kevin Wenliang (Google DeepMind) Machine Learning Techniques for Neuroscience August 5, 2023 29 / 34



Modern machine learning paradigms

Theory: neural networks and the Chompsky hierarchy

Task: compare performance of different neural architectures on tasks of the Chompsky hierarchy
(Delétang et al., 2022)

minf∈RNN class Ltr(f ; x1:100, y1:100) test on Ltr(f ; x1:500, y1:500)
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Modern machine learning paradigms

Meta-learning

Goal: learning to learn, finding an learning algorithm from data
From a sequence of tasks/datasets D(1)

tr , · · · D(n)
tr ∼ S

minLtr(f ,D(1)
tr , · · · D(n−1)

tr ) so that Leval(f ,D(n)
tr ) is small.

Weight-based: find f
that can adapt

Finn et al., 2017

Memory/Activity-based:
activity encodes task

Wang et al., 2018

Low-rank weights + memory

Dezfouli et al. 2019
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Modern machine learning paradigms

Learning complex dynamical systems

Traditional approach: simulate large-scale differential equations
The deep approach: throw in data (+tricks, inductive biases, etc.) and just train...

Predicting dark matter halo
density

Lucie-Smith et al., 2022

Weather forecasting

Vaughan et al., 2021

Estimating Hodgkin-Huxley model parameters

Gonçalves et al., 2020
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Modern machine learning paradigms

Learning from human preferences

Large language models (LLMs) require a large amount of expert inputs

Different ways of improving a trained LLM
prompt engineering / in-context learning
self-improvement with external tools
weight finetuning
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Modern machine learning paradigms

Concluding remarks

min
f∈M

Ltr(f ,Dtr) so that Leval(f ,Deval) is small, where Dtr,Deval ∼ S

Deep learning is the main workhorse for tech industry and aid for scientifc advances.
Traditional boundaries between forms of learning are getting blurred
Being smart is sometimes less important having interesting ideas (designing Ltr and S)

Transforming learning problems into data engineering
Thinking about natural cognitive abilities is helpful for generating ideas
Unclear how implementation level knowledge directly and exclusively drive deep learning
More tricks to be discovered
Theory of learning is important but have not generated big leaps
Imagination is the only limit

If you want to do research, you must have a deep learning plan.
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